
CS251

Cryptocurrencies and Blockchain Technologies

Final Exam – Tuesday, December 10, 2019

OPEN BOOK, OPEN NOTES, OPEN LAPTOP, CLOSED WiFi

Your Name:

SUNet ID: @stanford.edu

Check if you require expedited grading:

In accordance with both the letter and the spirit
of the Stanford Honor Code, I neither received nor
provided any assistance on this exam.

Signature:

• The exam has 6 questions totaling 100 points.

• You have 150 minutes to complete them.

• Please only use the front side of every page to write
your answers.

• Keep your answers concise.

1 /18

2 /16

3 /16

4 /18

5 /18

6 /14

Total /100

Page 1 of 11

1. [18 points]:

Questions from all over.

A) Why is the difficulty of the proof of work in Bitcoin set to ten minutes? What
would go wrong if it was changed to ten seconds?

B) Does Nakamoto consensus assume a synchronous, partially synchronous, or asyn-
chronous network model? Briefly explain why.

C) In class we discussed the Howey Test that defines what is a security. Are football
game tickets a security? Consider that some people buy tickets for the purpose of
scalping them later for profit.

D) What is the difference in the privacy models provided by Zcash vs. confidential
transactions?

Page 2 of 11

E) The Bitcoin blockchain contains many UTXOs that will never be spent, either
because of an OP RETURN script, or because the signing key needed to spend the
UTXO has been lost. Nevertheless, they must be maintained as part of the active
UTXO set. A frequent proposal is to modify Bitcoin so that UTXOs that are more
than two years old will be automatically removed from the UTXO set. Is this a
good idea? What would happen to transaction fees for a UTXO that is about to
expire in one month?

F) All stablecoin systems maintain some collateral so that when the price of the
stablecoin drops, the collateral can be used to shrink the supply of coins and bring
the price back up. Some projects maintain on-chain collateral (like MakerDao,
which uses ether for collateral) while others maintain off-chain collateral (like
USDT, which uses fiat currencies such as the US dollar for collateral). What
is the primary difference between these systems in terms of the required level of
trust by the public? Specifically, which design allows the public to verify that the
collateral is properly managed and maintained?

Page 3 of 11

2. [16 points]:

Consensus protocols.

A) Suppose Alice buys a digital product (e.g., a digital book) from an online merchant
and pays using Bitcoin. The merchant sends the product to Alice the minute it
sees the payment transaction in a block in the Bitcoin network. Why does this
strategy present a significant risk for the merchant?

B) A consensus protocol is said to be responsive if it offers instant finality on con-
firmed transactions. Your answer to the previous question shows that Nakamoto
consensus is not responsive. Are there consensus protocols in the authenticated
permissioned setting with a fixed set of n participants that are responsive? If
not explain why not; if yes explain what assumptions are needed on the maximal
number of faulty participants.

C) Proof of work. Recall that the mining difficulty in Bitcoin is updated roughly
every two weeks so that the expected inter-block time remains at 10 minutes. The
difficulty right after the genesis block is quite low, and it increases as more miners
join the network. Suppose the blockchain currently contains n blocks. An attacker
creates a blockchain of length n + 100, starting at the correct genesis block, but
where all blocks have the same low difficulty as the genesis block. Because the
difficulty is low in all blocks, creating such a long chain takes relatively little work.
If miners follow the “mine the longeset chain” rule they would abandon the correct
chain and mine this fake longer chain instead. Why is this not an attack on Bitcoin
consensus?

Page 4 of 11

3. [16 points]:

Solidity bugs. The following buggy Solidity contract implements a fund-raise for an
independent film project by an unknown director. Anyone can send ether to the contract
and receive tokens for their contribution, as implemented in the fallback function below.
Once the film is finished, royalties from the film will be distributed to all participants
based on token ownership. The project owner will fund the production of the film by
withdrawing ether from the contract using the withdraw function below. The contract
should ensure that every month the project owner can only withdraw 1 more ether than
has ever been withdrawn.

contract MovieToken {

address owner; // record owner address

mapping (address => uint256) balances; // investor balances

uint256 totalSupply; // total supply in contract

uint256 lastWithdrawDate; // last withdrawal time

function MovieToken() { // Constructor

owner = msg.sender;

balances[owner] = msg.value; // Owner may fund the movie

totalSupply = balances[owner];

}

function withdraw(uint256 amount) { // note: function is not payable

if (msg.sender != owner) { throw; } // Only owner may withdraw funds

if (amount == 0 || amount > this.balance) { throw; }

if (now < lastWithdrawDate + (1 months)) { throw; } // Only once per month

lastWithdrawDate = now;

// Withdraw schedule: only withdraw 1 more ether than has ever

// been withdrawn.

uint256 maxAmount = (totalSupply - this.balance + (1 ether));

if (amount > maxAmount) { throw; }

if (!owner.send(amount)) { throw; } // send the funds to owner

}

// Fallback function: record a fund-raise contribution

function () payable {

balances[msg.sender] += msg.value; // transfer tokens to investor

totalSupply += msg.value; // record amount

}

}

Page 5 of 11

A) What is the maximum amount that can be withdrawn in each of the first four
months, assuming the maximum amount is withdrawn every month?

month 1: , month 2: , month 3: , month 4: .

B) Describe an attack that lets the project owner withdraw all the funds sent to the
project immediately on the first month.
Hint: if someone sends funds to a contract address before the contract is created,
then upon creation of a contract at that address, the variable this.balance is
equal to the amount of funds sent prior to creation. Note also that all variables in
the MovieToken contract are unsigned integers, so that −1 is actually 2256 − 1.

C) When a contract, say contract X, executes a selfdestruct with contract Y ’s
address as an argument, this kills contract X and adds X’s balance to Y , without
triggering any code execution at Y . With this in mind, suppose we try to prevent
your attack from part (B) by changing the second line in the constructor to:

balances[owner] = this.balance + msg.value;

Is there an attack that lets the owner withdraw all the funds on the first month?

D) How should the contract be fixed so that it correctly implements the intended
withdrawal schedule, without changing the program logic?

Page 6 of 11

4. [18 points]:

Recall that a Rollup server can be used to scale payment transactions in the Ethereum
network. Rollup provides no privacy for the payer or payee: all transactions are recorded
in the clear on the blockchain.

A) Suppose Rollup used a zkSNARK and did not record transactions on the blockchain.
Would this provide the same level of privacy as Zcash? Justify your answer.

B) Optimistic Rollup is a variant of Rollup that eliminates the need for a SNARK. The
Rollup server simply posts an updated Merkle root to the blockchain, without a
SNARK. The update is signed by the Rollup server. Clearly this design is insecure.
Please explain what could go wrong if it were deployed as is.

C) Optimistic Rollup prevents the attack from part (B) by giving anyone a week
to contest any funds transfer. If a contest is submitted to the blockchain for a
particular funds transfer, then the Rollup server has one day to present a valid
transaction to justify the transfer. If it does, the blockchain verifies this one
transaction, and if it is valid, the contest is dropped. Otherwise, the Rollup server
is fined and the Merkle root is reverted to its state before the contested update. If
no one contests a Merkle root update within one week, then the update is finalized,
as are all payments that are part of this update. (this is a greatly over-simplified
description of optimistic Rollup.) Questions on the next page.

Page 7 of 11

• What are the implications of this design for an online merchant who wants to
sell a digital product to a customer Alice? When can the merchant send the
product to Alice? Explain your answer.

• What are the implications of this design for a user Alice who maintains her
account balance in this Rollup system? What must she do to ensure the
security of her funds?

D) Scaling by sharding. Consider a permissioned blockchain with a fixed set of n
validator nodes. One proposal for scaling the blockchain is to split it into n
independent blockchains, assigning one validator to each independent blockchain.
Now, every DAPP randomly selects a blockchain to run on, thereby increasing
throughput by a factor of n. What are two problems with this design?

Page 8 of 11

5. [18 points]:

SNARKs. Let F = {0, 1, 2, . . . , p− 1} be a prime finite field.

A) Let f(X) = c0 + c1X + . . .+ c4X
4 be a polynomial of degree 4 in F[X]. Let Cf (x)

be a circuit that returns 0 if and only if f(x) = 0 (i.e. this circuit checks that x
is a root of f). Show the R1CS program for this circuit by writing out the 4 × 5
matrices A,B,C that implement Cf . These matrices operate on a column vector
z := (1, x, w1, w2, w3) ∈ F5. You must ensure that there exist w1, w2, w3 ∈ F for
which (Az) ◦ (Bz) = Cz if and only if f(x) = 0.

B) LetG = (V,E) be a graph on n-vertices. A 3-coloring ofG is a vector (w1, . . . , wn) ∈
{0, 1, 2}n so that for all edges (u, v) ∈ E we have wu 6= wv (i.e., no two adjacent
vertices in the graph are assigned the same color). Finding a 3-coloring of a graph
is an NP-hard problem.

Let f be the degree-4 polynomial that satisfies f(2) = f(1) = f(−1) = f(−2) = 0
and f(0) = 1. Show that the following set of algebraic constraints on (w1, . . . , wn)
is satisfied if and only if (w1, . . . , wn) ∈ Fn is a 3-coloring of G: (assume |F| � |E|)

∑
(u,v)∈E

f(wu − wv) = 0,

wi(wi − 1)(wi − 2) = 0 for all i ∈ {1, . . . , n}.
(1)

Page 9 of 11

C) How many constraints (rows) are there in the R1CS program that implements (1)?
The program operates on the column vector (1, w1, . . . , wn, wn+1, . . . , wn+k) where
the entries wn+1, . . . , wn+k ∈ F are for you to define. Give your answer as a function
of n = |V | and m = |E|. You may use big-O notation. Justify your answer.

D) Suppose we use the R1CS program from part (C) to implement a trusted-setup
zkSNARK to prove that a graph is 3-colorable in zero-knowledge. How big are the
following quantities:

• The size of the proof:

• The running time of the verifier:

• The running time of the prover:

• The size of the prover parameters (called SP in lecture):

Express your answers in terms of n = |V | and m = |E|, and using big-O notation.
Assume that the linear-only encodings are constant size, and that each linear-only
encoding operation takes constant time.

Page 10 of 11

6. [14 points]:

HD wallets. Bitcoin will soon transition from ECDSA signatures to Schnorr signatures.
A schnorr secret key is a 256-bit integer α and the corresponding public key is h := gα,
where g is some fixed public base. A signature on a message m is a pair of integers
σ := (c, z). A signature σ on m is valid under public key h if the following equality
holds: H

(
m, (gz/hc)

)
= c, where H is a cryptographic hash function such as SHA256.

A) Recall that an HD wallet, as described in the lecture, maintains a spending key
(k1, k2) and an address generation key (h, k2), where h := gk1 . Address number i
is the hash of the public key hi where hi := h · gHMAC(k2,i). What is the purpose of
having a spending key and a separate address generation key?

B) Let’s see that Schnorr signatures can be insecure in this settings. Suppose an
attacker steals the address generation key (h, k2). Moreover, the attacker finds on
the blockchain a valid Schnorr signature (c, z) on a message m under public key
h3, where h3 is defined as in part (A) using i = 3. Show that the attacker can
now derive a signature (c, z′) on the same message m, but under the public key h4.
Explain how to construct z′. (this violates security because the address generation
key (h, k2) should not enable message signing.)

.

C) Can this be used to steal funds from an HD wallet? Say, if an attacker observes a
transaction that spends a UTXO belonging to address h3, can the attacker then
spend a UTXO belonging to address h4?
Hint: recall that a transaction signature in Bitcoin (typically) signs the transaction
data, which includes the public key of the UTXO being spent.

.

Page 11 of 11

